Myocardial strains from 3D displacement encoded magnetic resonance imaging

نویسندگان

  • Katarina Kindberg
  • Henrik Haraldsson
  • Andreas Sigfridsson
  • Jan E. Engvall
  • Neil B. Ingels
  • Tino Ebbers
  • Matts Karlsson
چکیده

BACKGROUND The ability to measure and quantify myocardial motion and deformation provides a useful tool to assist in the diagnosis, prognosis and management of heart disease. The recent development of magnetic resonance imaging methods, such as harmonic phase analysis of tagging and displacement encoding with stimulated echoes (DENSE), make detailed non-invasive 3D kinematic analyses of human myocardium possible in the clinic and for research purposes. A robust analysis method is required, however. METHODS We propose to estimate strain using a polynomial function which produces local models of the displacement field obtained with DENSE. Given a specific polynomial order, the model is obtained as the least squares fit of the acquired displacement field. These local models are subsequently used to produce estimates of the full strain tensor. RESULTS The proposed method is evaluated on a numerical phantom as well as in vivo on a healthy human heart. The evaluation showed that the proposed method produced accurate results and showed low sensitivity to noise in the numerical phantom. The method was also demonstrated in vivo by assessment of the full strain tensor and to resolve transmural strain variations. CONCLUSIONS Strain estimation within a 3D myocardial volume based on polynomial functions yields accurate and robust results when validated on an analytical model. The polynomial field is capable of resolving the measured material positions from the in vivo data, and the obtained in vivo strains values agree with previously reported myocardial strains in normal human hearts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping right ventricular myocardial mechanics using 3D cine DENSE cardiovascular magnetic resonance

BACKGROUND The mechanics of the right ventricle (RV) are not well understood as studies of the RV have been limited. This is, in part, due to the RV's thin wall, asymmetric geometry and irregular motion. However, the RV plays an important role in cardiovascular function. This study aims to describe the complex mechanics of the healthy RV using three dimensional (3D) cine displacement encoding w...

متن کامل

Articular cartilage deformation determined in an intact tibiofemoral joint by displacement-encoded imaging.

This study demonstrates the in vitro displacement and strain of articular cartilage in a cyclically-compressed and intact joint using displacement-encoded imaging with stimulated echoes (DENSE) and fast spin echo (FSE). Deformation and strain fields exhibited complex and heterogeneous patterns. The displacements in the loading direction ranged from -1688 to -1481 microm in the tibial cartilage ...

متن کامل

Imaging three-dimensional myocardial mechanics using navigator-gated volumetric spiral cine DENSE MRI.

A navigator-gated 3D spiral cine displacement encoding with stimulated echoes (DENSE) pulse sequence for imaging 3D myocardial mechanics was developed. In addition, previously described 2D postprocessing algorithms including phase unwrapping, tissue tracking, and strain tensor calculation for the left ventricle (LV) were extended to 3D. These 3D methods were evaluated in five healthy volunteers...

متن کامل

In situ deformation of cartilage in cyclically loaded tibiofemoral joints by displacement-encoded MRI.

OBJECTIVES Cartilage displacement and strain patterns were documented noninvasively in intact tibiofemoral joints in situ by magnetic resonance imaging (MRI). This study determined the number of compressive loading cycles required to precondition intact joints prior to imaging, the spatial distribution of displacements and strains in cartilage using displacement-encoded MRI, and the depth-depen...

متن کامل

Reconstruction of myocardial tissue motion and strain fields from displacement-encoded MR imaging.

A quantitative analysis of myocardial mechanics is fundamental to understanding cardiac function, diagnosis of heart disease, and assessment of therapeutic intervention. Displacement encoding with stimulated-echo (DENSE) magnetic resonance imaging (MRI) technique was developed to track the three-dimensional (3D) displacement vector of discrete material grid points in the myocardial tissue. Desp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2012